Nappamerrri Trough Natural Gas – Project Update
Mark Pitkin, Team Leader Cooper Unconventional Resources
Nappamerringi Trough Natural Gas

- A staged and methodical exploration and appraisal program
- Delineation of a significant untapped resource
- Flexible program to adjust to results
- Multiple formations present
- Process takes time and each piece of information important
- Mid-stride in an important stage of our assessment
- Moving up the learning curve

Permian section equity interests: PEL 218 (Beach 70% and operator, Chevron 30%) and ATP 855 (Beach 46.9% and operator, Chevron 18%, Icon Energy 35.1%)
Confirmation of resource potential

- Proven gas saturated target zones
- Established ability to fracture stimulate
- Established ability to flow gas from target zone
- Initial volumetric estimates and resource booking
Learning curve

Vertical and horizontal exploration phase

- Geographically and vertically delineate target zones
- Build conceptual geological models
- Experiment with different stimulation techniques
- Increase resource booking with new wells
- Gain information on subsurface fracture stimulation
- Gain preliminary information on deliverability
Learning curve

Continued appraisal
- Determine production variability
- Build resource confidence
- Potential small scale pilot
Learning curve

Pilot projects

- Stepwise optimisation:
 - Refine well design and stimulation
- Build deliverability
- Scale efficiencies
- Targeted development
Learning curve

Development
- Ongoing optimisation
- Competitive services
- Infrastructure expansion
Exploration concept

- **Rocks**
 - Porosity
 - Gas content
 - Maturity
 - Stress
 - Permeability

 Target intervals

- **Technology**
 - Drilling
 - Tiltmeters
 - Microseismic
 - Coil tubing
 - Fluid tracers

 Productivity

- **Flow tests**
 - Zonal contribution
 - Geographical variation
 - Rate transient analysis

 Productivity

 Target intervals
Exploring rocks – regional scale

• Contributing to delineation of gas in place through the study of:
 – Trough architecture
 – Depositional environments
 – Maturity variation

• Contributing to understanding of productivity through the study of:
 – Structural history
 – Stress orientations and magnitudes
 – Geological facies variation
 – Overpressure
Exploring rocks – well scale

- Contributing to delineation of gas in place through the study of:
 - Organic content
 - Diagenesis
 - Porosity preservation
 - Lithology heterogeneity
 - Gas saturation

- Contributing to understanding of productivity through the study of:
 - Natural fracture distribution
 - Mechanical properties of the rocks
 - Permeability variation
 - Rock-fluid interactions
Exploring rocks – micro scale

- Contributing to delineation of gas in place through the study of:
 - Micro porosity distribution
 - Adsorption capacity in shales
 - Free gas characterisation
 - Porosity enhancement through diagenesis

- Contributing to understanding of productivity through the study of:
 - Pore connectivity
 - Pore throat size distribution
 - Bound water behaviour
 - Micro fractures

Boston-1 Roseneath Shale, horizontal field of view ~20μm
Exploring technology

Increased understanding of the rocks resulting in reduced drilling times.
Exploring technology

- New well design and stimulation designs are being evaluated
- Stimulation/isolation methods:
 - Sand plugs (applied)
 - Flow through stimulation plugs (applied)
 - Coil tubing jetting (being utilised)
 - Coil conveyed stimulation (considering potential for downhole mixing)
 - Sleeve techniques (in consideration)

Down hole mixing of water and proppant
Source: Halliburton
Exploring flow rates

- **Holdfast-1**: 7 stages, 2.0 MMscfd
- **Holdfast-2**: 9 stages, awaiting flow test
- **Moonta-1**: 10 stages, 2.6 MMscfd
- **Encounter-1**: 6 stages, 2.1 MMscfd
- **Halifax-1**: 14 stages, 4.5 MMscfd
- **Streaky-1**: 9 stages, awaiting flow test
- **Marble-1**: 12 stages, awaiting flow test
- **Nepean-1**: 12 stages, awaiting flow test
- **Redland-1**: awaiting drilling
- **Geoffrey-1**: currently drilling
- **Rapid-1**: awaiting stimulation
- **Boston-1**: currently drilling
- **Boston-3**: awaiting stimulation
- **Keppel-1**: gas to surface unstimulated
- **Dashwood-1**: awaiting stimulation
- **Holdfast-2**: awaiting stimulation

Nb. Subject to JV approval. Stated flow rates are peak flow rates.
Exploration and appraisal cross section

Note: Well locations are approximate only and may have been shifted to show their correct structural position on the cross section.
Holdfast-2 update

- Holdfast-2 drilled laterally into the Murteree shale
- Fracture stimulation completed
- Stimulation monitored by both downhole and surface micro-seismic tools as well as tiltmeters
- Utilised monitoring technology to trial different fracture stimulation designs to increase understanding of formation response to:
 - Change in fluid types
 - Different stage volumes
 - Perforation/jetting options
- Clean up flow commenced
- Initial flow data expected by mid-December

New technology being applied to optimise future stimulation design
Focused learning – Boston

- Boston area selected for detailed program due to:
 - Strong gas shows while drilling
 - Good reservoir quality
 - Proximity to raw gas line
- Boston-3 horizontal well drilled in the lower Murteree Shale
- Boston-2 drilled in optimal location to micro-seismically monitor fracture stimulation in Boston-1 and Boston-3
- Boston project aims to increase understanding of:
 - Sand body continuity
 - Well spacing
 - Fracture geometry
 - Stimulated rock volume
 - Optimal fracture spacing
NTNG wells and proposed timeline

Note: Timeline subject to third party equipment delivery, weather and joint venture and regulatory approvals