

The Hidden Value of Organic Wastes

Michelle Penington Process Engineer ADI Systems Asia Pacific

BioEnergy Forum, Loxton Research Centre, 21st June 2017

- Anaerobic Digestion and Biogas 101
- Anaerobic Technology
- What Organic "Waste" is "Food"
- Examples
- Feasibility

Waste to Energy Concept

- Process of recovering energy from waste in the form of Heat / Electricity / Fuel
- W2E processes:
 - Non-thermal Anaerobic digestion, Fermentation, Composting
 - Thermal Incineration, Pyrolysis, Gasification
- Benefits:
 - Economic
 - o Environmental
 - o Social

Anaerobic Digestion

 Biological breakdown of biodegradable matter in the absence of oxygen

Concentrated colonies of bacteria

 In the right environment they will munch their way through tonnes of material every day.

• Products:

• Biogas (Methane and Carbon Dioxide)

- Heat / Electricity / Transport Fuel
- Stabilised Nutrient Rich Digestate

× Fertiliser

• Clean water for reuse

Biogas Uses

Simplest: **Burn it**: Boiler, drying, domestic fuel 80 – 90% Recovery

Biogas Uses

Simplest: **Burn it**: Boiler, drying, domestic fuel More Complex: **Generate Electricity Power only:** 30 – 40% Recovery **CHP:** 80 – 90% Recovery

Sell Electricity or offset own costs

Biogas Uses Simplest: Burn it: Boiler, drying, domestic fuel More Complex: Generate Electricity Most Complex: Transport Fuels

Dried fertiliser N:P:K = 6:3:4

Clean Water Reuse

Secondary aerobic treatment
 Class B recycled water quality

Reverse Osmosis;
Class A recycled water quality

Anaerobic Technology – Low Rate

ADI-BVF® ADI-CGR®

simple, efficient, low-maintenance

Lagoon Based

Tank Based

Anaerobic Technology – High Rate

Higher Capital and Operating Cost

ADI-ECSB

Small footprint, Enhanced COD removal, Higher biogas yield

ADI-AnMBR

Organic Food Sources

Waste Organic Material = Renewable Fuel

Energy of waste	
Waste	Wet mass methane potential* (m ³ CH ₄ /1000 kg)
Sewage Sludge	6-10
Cattle Manure (outdoor pen)	10
OFMSW	15-190
Grape Marc	45
Food grease	340
Food waste	79
Fruit & Vegetable Waste	35

* References can be provided upon request, SMP is dependent on the conditions and substrate quality

Example - Sydney Waste

- 2 x Anaerobic CSTR digesters
- Designed for 82,000 t/y of source segregated food waste and industrial sludges/flotation foams
- 26,000 m³ biogas per day
- Products:
 - dried fertiliser,
 - o liquid fertiliser concentrate,
 - o electricity,
 - o treated water
- Designed for $3 \times 1.3 MW_{el}$
- Footprint of less than 1.5 ha

Example - Sydney Waste

Feasible in Regional SA?

• Possible drivers:

- Avoided cost for waste disposal
- Avoided cost of energy
- Trade Waste compliance
- Waste Minimization act 2008
- Odour control
- Avoidance/minimisation of electricity peak demand charges
- Demand for heat

• Risks:

- FEEDSTOCK!!!
 - × Freely available
 - Secured (Contract)
 - Minimum amount of contaminants
 - Preferably available all year round
- Established market for the products

FEASIBILITY IS PROJECT-SPECIFIC, must be assessed individually

Analytical Planning Steps

Assess the resource

- Availability
- O Quality
- Energy content
- Transport costs

Estimate benefits

- Avoided costs of energy, disposal
- Alternative disposal techniques
- Suitability of benefits for core objectives

Technology Review

- Technology costs
- Site Selection
- o System Design

Procurement Options Assessment

Full Economic Assessment

ADI Systems

- Design and construction of industrial/municipal wastewater treatment systems
- 200+ operating installations and decades of application experience
- A wide range of technologies
- Our offer:
 - waste characterization,
 - treatability and pilot studies,
 - feasibility assessment
 - process and detail design,
 - construction management,
 - commissioning,
 - o operator training,
 - o start-up

• ongoing aftercare service for long-term operations assistance

THANK YOU

- ADI Systems Asia Pacific
- http://www.adisystems.com/
- 83 Castle Street, Dunedin, NZ
- PO Box 5892, Moray Place, Dunedin 9058,
- New Zealand Reception: +64 3 951 0240
- <u>michelle.j.penington@adi.ca</u>